Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 601(19): 4291-4308, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37642186

RESUMO

Cochlear outer hair cells (OHCs) are responsible for the exquisite frequency selectivity and sensitivity of mammalian hearing. During development, the maturation of OHC afferent connectivity is refined by coordinated spontaneous Ca2+ activity in both sensory and non-sensory cells. Calcium signalling in neonatal OHCs can be modulated by oncomodulin (OCM, ß-parvalbumin), an EF-hand calcium-binding protein. Here, we investigated whether OCM regulates OHC spontaneous Ca2+ activity and afferent connectivity during development. Using a genetically encoded Ca2+ sensor (GCaMP6s) expressed in OHCs in wild-type (Ocm+/+ ) and Ocm knockout (Ocm-/- ) littermates, we found increased spontaneous Ca2+ activity and upregulation of purinergic receptors in OHCs from Ocm-/- cochlea immediately following birth. The afferent synaptic maturation of OHCs was delayed in the absence of OCM, leading to an increased number of ribbon synapses and afferent fibres on Ocm-/- OHCs before hearing onset. We propose that OCM regulates the spontaneous Ca2+ signalling in the developing cochlea and the maturation of OHC afferent innervation. KEY POINTS: Cochlear outer hair cells (OHCs) exhibit spontaneous Ca2+ activity during a narrow period of neonatal development. OHC afferent maturation and connectivity requires spontaneous Ca2+ activity. Oncomodulin (OCM, ß-parvalbumin), an EF-hand calcium-binding protein, modulates Ca2+ signals in immature OHCs. Using transgenic mice that endogenously expressed a Ca2+ sensor, GCaMP6s, we found increased spontaneous Ca2+ activity and upregulated purinergic receptors in Ocm-/- OHCs. The maturation of afferent synapses in Ocm-/- OHCs was also delayed, leading to an upregulation of ribbon synapses and afferent fibres in Ocm-/- OHCs before hearing onset. We propose that OCM plays an important role in modulating Ca2+ activity, expression of Ca2+ channels and afferent innervation in developing OHCs.


Assuntos
Cálcio , Células Ciliadas Auditivas Externas , Camundongos , Animais , Células Ciliadas Auditivas Externas/fisiologia , Cálcio/metabolismo , Parvalbuminas/metabolismo , Cóclea/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Camundongos Transgênicos , Receptores Purinérgicos/metabolismo , Mamíferos/metabolismo
2.
bioRxiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909575

RESUMO

Cochlear outer hair cells (OHCs) are responsible for the exquisite frequency selectivity and sensitivity of mammalian hearing. During development, the maturation of OHC afferent connectivity is refined by coordinated spontaneous Ca 2+ activity in both sensory and non-sensory cells. Calcium signaling in neonatal OHCs can be modulated by Oncomodulin (OCM, ß-parvalbumin), an EF-hand calcium-binding protein. Here, we investigated whether OCM regulates OHC spontaneous Ca 2+ activity and afferent connectivity during development. Using a genetically encoded Ca 2+ sensor (GCaMP6s) expressed in OHCs in wild-type (Ocm +/+ ) and Ocm knockout (Ocm -/- ) littermates, we found increased spontaneous Ca 2+ activity and upregulation of purinergic receptors in OHCs from GCaMP6s Ocm -/- cochlea immediately following birth. The afferent synaptic maturation of OHCs was delayed in the absence of OCM, leading to an increased number of ribbon synapses and afferent fibers on GCaMP6s Ocm -/- OHCs before hearing onset. We propose that OCM regulates the spontaneous Ca 2+ signaling in the developing cochlea and the maturation of OHC afferent innervation.

3.
Cell Calcium ; 105: 102613, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797824

RESUMO

In cochlear outer hair cells (OHCs), a network of Ca2+ channels, pumps and Ca2+-binding proteins (CaBPs) regulates the localization, spread, and magnitude of free Ca2+ ions. During early postnatal development, OHCs express three prominent mobile EF-hand CaBPs: oncomodulin (OCM), α-parvalbumin (APV) and sorcin. We have previously shown that deletion of Ocm (Ocm-/-) gives rise to progressive cochlear dysfunction in young adult mice. Here, we show that changes in Ca2+ signaling begin early in postnatal development of Ocm-/- mice. While mutant OHCs exhibit normal electrophysiological profiles compared to controls, their intracellular Ca2+ signaling is altered. The onset of OCM expression at postnatal day 3 (P3) causes a developmental change in KCl-induced Ca2+ transients in OHCs and leads to slower KCl-induced Ca2+ transients than those elicited in cells from Ocm-/- littermates. We compared OCM buffering kinetics with other CaBPs in animal models and cultured cells. In a double knockout of Ocm and Apv (Ocm-/-;Apv-/-), mutant OHCs show even faster Ca2+ kinetics, suggesting that APV may also contribute to early postnatal Ca2+ signaling. In transfected HEK293T cells, OCM slows Ca2+ kinetics more so than either APV or sorcin. We conclude that OCM controls the intracellular Ca2+ environment by lowering the amount of freely available [Ca2+]i in OHCs and transfected HEK293T cells. We propose that OCM plays an important role in shaping the development of early OHC Ca2+ signals through its inimitable Ca2+ buffering capacity.


Assuntos
Sinalização do Cálcio , Células Ciliadas Auditivas Externas , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células HEK293 , Células Ciliadas Auditivas Externas/metabolismo , Humanos , Camundongos , Parvalbuminas/metabolismo
4.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35131866

RESUMO

Regeneration can occur in peripheral neurons after injury, but the mechanisms involved are not fully delineated. Macrophages in dorsal root ganglia (DRGs) are involved in the enhanced regeneration that occurs after a conditioning lesion (CL), but how macrophages stimulate this response is not known. Oncomodulin (Ocm) has been proposed as a proregenerative molecule secreted by macrophages and neutrophils, is expressed in the DRG after axotomy, and stimulates neurite outgrowth by DRG neurons in culture. Wild-type (WT) and Ocm knock-out (KO) mice were used to investigate whether Ocm plays a role in the CL response in DRG neurons after sciatic nerve transection. Neurite outgrowth was measured after 24 and 48 h in explant culture 7 d after a CL. Sciatic nerve regeneration was also measured in vivo 7 d after a CL and 2 d after a subsequent sciatic nerve crush. The magnitude of the increased neurite outgrowth following a CL was significantly smaller in explants from Ocm KO mice than in explants from WT mice. In vivo after a CL, increased regeneration was found in WT animals but not in KO animals. Macrophage accumulation and levels of interleukin-6 (IL-6) mRNA were measured in axotomized DRG from WT and Ocm KO animals, and both were significantly higher than in sham-operated ganglia. At 6 h after axotomy, Il-6 mRNA was higher in WT than in Ocm KO mice. Our data support the hypothesis that Ocm plays a necessary role in producing a normal CL response and that its effects possibly result in part from stimulation of the expression of proregenerative macrophage cytokines such as IL-6.


Assuntos
Gânglios Espinais , Regeneração Nervosa , Animais , Proteínas de Ligação ao Cálcio , Gânglios Espinais/metabolismo , Camundongos , Camundongos Knockout , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Nervo Isquiático/metabolismo
5.
Front Aging Neurosci ; 13: 749729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867279

RESUMO

Ca2+ signaling is a major contributor to sensory hair cell function in the cochlea. Oncomodulin (OCM) is a Ca2+ binding protein (CaBP) preferentially expressed in outer hair cells (OHCs) of the cochlea and few other specialized cell types. Here, we expand on our previous reports and show that OCM delays hearing loss in mice of two different genetic backgrounds: CBA/CaJ and C57Bl/6J. In both backgrounds, genetic disruption of Ocm leads to early progressive hearing loss as measured by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE). In both strains, loss of Ocm reduced hearing across lifetime (hearing span) by more than 50% relative to wild type (WT). Even though the two WT strains have very different hearing spans, OCM plays a considerable and similar role within their genetic environment to regulate hearing function. The accelerated age-related hearing loss (ARHL) of the Ocm KO illustrates the importance of Ca2+ signaling in maintaining hearing health. Manipulation of OCM and Ca2+ signaling may reveal important clues to the systems of function/dysfunction that lead to ARHL.

6.
Dev Neurosci ; 43(6): 358-375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34348289

RESUMO

Prenatal exposures to alcohol (PAE) and tobacco (PTE) are known to produce adverse neonatal and childhood outcomes including damage to the developing auditory system. Knowledge of the timing, extent, and combinations of these exposures on effects on the developing system is limited. As part of the physiological measurements from the Safe Passage Study, Auditory Brainstem Responses (ABRs) and Transient Otoacoustic Emissions (TEOAEs) were acquired on infants at birth and one-month of age. Research sites were in South Africa and the Northern Plains of the U.S. Prenatal information on alcohol and tobacco exposure was gathered prospectively on mother/infant dyads. Cluster analysis was used to characterize three levels of PAE and three levels of PTE. Repeated-measures ANOVAs were conducted for newborn and one-month-old infants for ABR peak latencies and amplitudes and TEOAE levels and signal-to-noise ratios. Analyses controlled for hours of life at test, gestational age at birth, sex, site, and other exposure. Significant main effects of PTE included reduced newborn ABR latencies from both ears. PTE also resulted in a significant reduction of ABR peak amplitudes elicited in infants at 1-month of age. PAE led to a reduction of TEOAE amplitude for 1-month-old infants but only in the left ear. Results indicate that PAE and PTE lead to early disruption of peripheral, brainstem, and cortical development and neuronal pathways of the auditory system, including the olivocochlear pathway.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Criança , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Humanos , Lactente , Emissões Otoacústicas Espontâneas , Gravidez
7.
J Physiol ; 598(1): 151-170, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31661723

RESUMO

KEY POINTS: Outer hair cells (OHCs) enhance the sensitivity and the frequency tuning of the mammalian cochlea. Similar to the primary sensory receptor, the inner hair cells (IHCs), the mature functional characteristics of OHCs are acquired before hearing onset. We found that OHCs, like IHCs, fire spontaneous Ca2+ -induced action potentials (APs) during immature stages of development, which are driven by CaV 1.3 Ca2+ channels. We also showed that the development of low- and high-frequency hair cells is differentially regulated during pre-hearing stages, with the former cells being more strongly dependent on experience-independent Ca2+ action potential activity. ABSTRACT: Sound amplification within the mammalian cochlea depends upon specialized hair cells, the outer hair cells (OHCs), which possess both sensory and motile capabilities. In various altricial rodents, OHCs become functionally competent from around postnatal day 7 (P7), before the primary sensory inner hair cells (IHCs), which become competent at about the onset of hearing (P12). The mechanisms responsible for the maturation of OHCs and their synaptic specialization remain poorly understood. We report that spontaneous Ca2+ activity in the immature cochlea, which is generated by CaV 1.3 Ca2+ channels, differentially regulates the maturation of hair cells along the cochlea. Under near-physiological recording conditions we found that, similar to IHCs, immature OHCs elicited spontaneous Ca2+ action potentials (APs), but only during the first few postnatal days. Genetic ablation of these APs in vivo, using CaV 1.3-/- mice, prevented the normal developmental acquisition of mature-like basolateral membrane currents in low-frequency (apical) hair cells, such as IK,n (carried by KCNQ4 channels), ISK2 and IACh (α9α10nAChRs) in OHCs and IK,n and IK,f (BK channels) in IHCs. Electromotility and prestin expression in OHCs were normal in CaV 1.3-/- mice. The maturation of high-frequency (basal) hair cells was also affected in CaV 1.3-/- mice, but to a much lesser extent than apical cells. However, a characteristic feature in CaV 1.3-/- mice was the reduced hair cell size irrespective of their cochlear location. We conclude that the development of low- and high-frequency hair cells is differentially regulated during development, with apical cells being more strongly dependent on experience-independent Ca2+ APs.


Assuntos
Cóclea/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta , Camundongos , Camundongos Knockout
8.
Front Mol Neurosci ; 12: 235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649505

RESUMO

EF-hand Ca2+-binding protein family members, α- and ß-parvalbumins have been studied for decades. Yet, considerable information is lacking distinguishing functional differences between mammalian α-parvalbumin (PVALB) and oncomodulin (OCM), a branded ß-parvalbumin. Herein, we provide an overview detailing the current body of work centered around OCM as an EF-Hand Ca2+-binding protein and describe potential mechanisms of OCM function within the inner ear and immune cells. Additionally, we posit that OCM is evolutionarily distinct from PVALB and most other ß-parvalbumins. This review summarizes recent studies pertaining to the function of OCM and emphasizes OCM as a parvalbumin possessing a unique cell and tissue distribution, Ca2+ buffering capacity and phylogenetic origin.

9.
EMBO J ; 38(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30804003

RESUMO

Outer hair cells (OHCs) are highly specialized sensory cells conferring the fine-tuning and high sensitivity of the mammalian cochlea to acoustic stimuli. Here, by genetically manipulating spontaneous Ca2+ signalling in mice in vivo, through a period of early postnatal development, we find that the refinement of OHC afferent innervation is regulated by complementary spontaneous Ca2+ signals originating in OHCs and non-sensory cells. OHCs fire spontaneous Ca2+ action potentials during a narrow period of neonatal development. Simultaneously, waves of Ca2+ activity in the non-sensory cells of the greater epithelial ridge cause, via ATP-induced activation of P2X3 receptors, the increase and synchronization of the Ca2+ activity in nearby OHCs. This synchronization is required for the refinement of their immature afferent innervation. In the absence of connexin channels, Ca2+ waves are impaired, leading to a reduction in the number of ribbon synapses and afferent fibres on OHCs. We propose that the correct maturation of the afferent connectivity of OHCs requires experience-independent Ca2+ signals from sensory and non-sensory cells.


Assuntos
Vias Aferentes , Canais de Cálcio Tipo L/fisiologia , Cálcio/metabolismo , Cóclea/fisiologia , Conexina 30/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Animais , Sinalização do Cálcio , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores Purinérgicos P2X3/fisiologia , Sinapses/fisiologia
10.
J Assoc Res Otolaryngol ; 19(1): 33-51, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29318409

RESUMO

Oncomodulin (OCM, aka ß-parvalbumin) is an EF-hand calcium binding protein that is expressed in a restricted set of hair cells in the peristriolar region of the mammalian utricle. In the present study, we determined the topologic distribution of OCM among hair cell phenotypes to advance our understanding of the cellular organization of the striola and the relationship of these phenotypes with characteristics of tissue polarity. The distributions of OCM-positive (OCM+) hair cells were quantified in utricles of mature C57Bl/6 mice. Immunohistochemistry was conducted using antibodies to OCM, calretinin, and ß3-tubulin. Fluorophore-conjugated phalloidin was used to label hair cell stereocilia, which provided the basis for determining hair cell counts and morphologic polarizations. We found OCM expression in striolar types I and II hair cells, though the distributions were dissimilar to the native striolar type I and II distributions, favoring type I hair cells. The distribution of OCM immunoreactivity among striolar type I hair cells also reflected nonrandom distribution among type Ic and Id phenotypes (i.e., those receiving calretinin-positive and calretinin-negative calyces, respectively). However, many OCM+ hair cells were found lateral to the striola, and within the epithelial region encompassing OCM+ hair cells, the distributions of OCM+ types Ic and Id hair cells were similar to the native distributions of Ic and Id in this region. Summarily, these data provide a quantitative perspective supporting the existence of different underlying factors driving the topologic expression of OCM in hair cells than those responsible for tissue polarity characteristics associated within the utricular striola, including calretinin expression in afferent calyces.


Assuntos
Proteínas de Ligação ao Cálcio/análise , Sáculo e Utrículo/química , Animais , Calbindina 2/análise , Células Ciliadas Auditivas/química , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Sáculo e Utrículo/citologia
11.
Front Neurosci ; 11: 516, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28983232

RESUMO

We generated constitutive knockout mouse models for the α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits by derivation from conditional knockouts by breeding with CRE deleter mice. We then backcrossed them onto a C57BL/6J genetic background. In this manuscript, we report the generation of the strains and an auditory phenotypic characterization of the constitutive α9 and α10 knockouts and a double α9α10 constitutive knockout. Although the α9 and α10 nAChR subunits are relevant to a number of physiological measures, we chose to characterize the mouse with auditory studies to compare them to existing but different α9 and α10 nAChR knockouts (KOs). Auditory brainstem response (ABR) measurements and distortion product otoacoustic emissions (DPOAEs) showed that all constitutive mouse strains had normal hearing. DPOAEs with contralateral noise (efferent adaptation measurements), however, showed that efferent strength was significantly reduced after deletion of both the α9 and α10 subunits, in comparison to wildtype controls. Animals tested were 3-8 weeks of age and efferent strength was not correlated with age. Confocal studies of single and double constitutive KOs showed that all KOs had abnormal efferent innervation of cochlear hair cells. The morphological results are similar to those obtained in other strains using constitutive deletion of exon 4 of α9 or α10 nAChR. The results of our physiological studies, however, differ from previous auditory studies using a α9 KO generated by deletion of the exon 4 region and backcrossed onto a mixed CBA/CaJ X 129Sv background.

12.
J Neurosci ; 36(5): 1631-5, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843644

RESUMO

Oncomodulin (Ocm), a member of the parvalbumin family of calcium binding proteins, is expressed predominantly by cochlear outer hair cells in subcellular regions associated with either mechanoelectric transduction or electromotility. Targeted deletion of Ocm caused progressive cochlear dysfunction. Although sound-evoked responses are normal at 1 month, by 4 months, mutants show only minimal distortion product otoacoustic emissions and 70-80 dB threshold shifts in auditory brainstem responses. Thus, Ocm is not critical for cochlear development but does play an essential role for cochlear function in the adult mouse. SIGNIFICANCE STATEMENT: Numerous proteins act as buffers, sensors, or pumps to control calcium levels in cochlear hair cells. In the inner ear, EF-hand calcium buffers may play a significant role in hair cell function but have been very difficult to study. Unlike other reports of genetic disruption of EF-hand calcium buffers, deletion of oncomodulin (Ocm), which is predominately found in outer hair cells, leads to a progressive hearing loss after 1 month, suggesting that Ocm critically protects hearing in the mature ear.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Cálcio/metabolismo , Cóclea/fisiologia , Motivos EF Hand/fisiologia , Audição/fisiologia , Animais , Proteínas de Ligação ao Cálcio/deficiência , Perda Auditiva/genética , Perda Auditiva/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos
13.
J Exp Biol ; 217(Pt 9): 1626-36, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24501139

RESUMO

The American bullfrog (Rana catesbeiana) has an amphibian papilla (AP) that senses airborne, low-frequency sound and generates distortion product otoacoustic emissions (DPOAEs) similar to other vertebrate species. Although ranid frogs are typically found in noisy environments, the effects of noise on the AP have not been studied. First, we determined the noise levels that diminished DPOAE at 2f1-f2 using an f2 stimulus level at 80 dB SPL and that also produced morphological damage of the sensory epithelium. Second, we compared DPOAE (2f1-f2) responses with histopathologic changes occurring in bullfrogs after noise exposure. Consistent morphological damage, such as fragmented hair cells and missing bundles, as well as elimination of DPOAE responses were seen only after very high-level (>150 dB SPL) sound exposures. The morphological response of hair cells to noise differed along the mediolateral AP axis: medial hair cells were sensitive to noise and lateral hair cells were relatively insensitive to noise. Renewed or repaired hair cells were not observed until 9 days post-exposure. Following noise exposure, DPOAE responses disappeared within 24 h and then recovered to normal pre-exposure levels within 3-4 days. Our results suggest that DPOAEs in the bullfrog are sensitive to the initial period of hair cell damage. After noise-induced damage, the bullfrog AP has functional recovery mechanisms that do not depend on substantial hair cell regeneration or repair. Thus, the bullfrog auditory system might serve as an interesting model for investigation of ways to prevent noise damage.


Assuntos
Células Ciliadas Auditivas/patologia , Perda Auditiva Provocada por Ruído/patologia , Ruído , Emissões Otoacústicas Espontâneas/fisiologia , Animais , Orelha Interna/fisiopatologia , Rana catesbeiana , Recuperação de Função Fisiológica
14.
Hear Res ; 292(1-2): 64-70, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22940201

RESUMO

Auditory hair cells in the amphibian papilla (APHCs) of the leopard frog, Rana pipiens pipiens, have a significantly higher permeability to water than that observed in mammalian hair cells. The insensitivity of water permeability in frog hair cells to extracellular mercury suggests that an amphibian homologue of the water channel aquaporin-4 (AQP4) may mediate water transport in these cells. Using immunocytochemistry, we show that an AQP4-like protein is found in APHCs. Rabbit anti-AQP4 antibody was used in multiple-immunohistochemical staining experiments along with AP hair cell and hair bundle markers in leopard frog and mouse tissue. AQP4 immunoreactivity was found in the basal and apical poles of the APHCs and shows uniform immunoreactivity. This study provides the first identification and localization of an AQP4-like protein in the amphibian inner ear. We also report a more direct measure of hyperosmotically-induced volume changes in APHCs that confirms previous findings. The presence of water channels in anuran APHCs constitutes a novel physiological difference between amphibian and mammalian hair cell structure and function.


Assuntos
Proteínas de Anfíbios/metabolismo , Aquaporinas/metabolismo , Permeabilidade da Membrana Celular , Células Ciliadas Auditivas/metabolismo , Rana pipiens/metabolismo , Água/metabolismo , Animais , Aquaporina 4/metabolismo , Tamanho Celular , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Osmose , Fatores de Tempo
15.
Hear Res ; 283(1-2): 70-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22146424

RESUMO

Three species of anuran amphibians (Odorrana tormota, Odorrana livida and Huia cavitympanum) have recently been found to detect ultrasounds. We employed immunohistochemistry and confocal microscopy to examine several morphometrics of the inner ear of these ultrasonically sensitive species. We compared morphological data collected from the ultrasound-detecting species with data from Rana pipiens, a frog with a typical anuran upper cut-off frequency of ∼3 kHz. In addition, we examined the ears of two species of Lao torrent frogs, Odorrana chloronota and Amolops daorum, that live in an acoustic environment approximating those of ultrasonically sensitive frogs. Our results suggest that the three ultrasound-detecting species have converged on small-scale functional modifications of the basilar papilla (BP), the high-frequency hearing organ in the frog inner ear. These modifications include: 1. reduced BP chamber volume, 2. reduced tectorial membrane mass, 3. reduced hair bundle length, and 4. reduced hair cell soma length. While none of these factors on its own could account for the US sensitivity of the inner ears of these species, the combination of these factors appears to extend their hearing bandwidth, and facilitate high-frequency/ultrasound detection. These modifications are also seen in the ears of O. chloronota, suggesting that this species is a candidate for high-frequency hearing sensitivity. These data form the foundation for future functional work probing the physiological bases of ultrasound detection by a non-mammalian ear.


Assuntos
Orelha Interna/anatomia & histologia , Orelha Interna/fisiologia , Audição , Rana pipiens/anatomia & histologia , Rana pipiens/fisiologia , Ultrassom , Actinas/análise , Adaptação Fisiológica , Proteínas de Anfíbios/análise , Animais , Biomarcadores/análise , Orelha Interna/química , Imuno-Histoquímica , Masculino , Microscopia Confocal , Cadeias Pesadas de Miosina/análise , Órgão Espiral/anatomia & histologia , Órgão Espiral/fisiologia , Especificidade da Espécie
16.
J Comp Neurol ; 518(18): 3785-802, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20653034

RESUMO

The tight regulation of Ca(2+) is essential for inner ear function, and yet the role of Ca(2+) binding proteins (CaBPs) remains elusive. By using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR), we investigated the expression of oncomodulin (Ocm), a member of the parvalbumin family, relative to other EF-hand CaBPs in cochlear and vestibular organs in the mouse. In the mouse cochlea, Ocm is found only in outer hair cells and is localized preferentially to the basolateral outer hair cell membrane and to the base of the hair bundle. Developmentally, Ocm immunoreactivity begins as early as postnatal day (P) 2 and shows preferential localization to the basolateral membrane and hair bundle after P8. Unlike the cochlea, Ocm expression is substantially reduced in vestibular tissues at older adult ages. In vestibular organs, Ocm is found in type I striolar or central hair cells, and has a more diffuse subcellular localization throughout the hair cell body. Additionally, Ocm immunoreactivity in vestibular hair cells is present as early as E18 and is not obviously affected by mutations that cause a disruption of hair bundle polarity. We also find Ocm expression in striolar hair cells across mammalian species. These data suggest that Ocm may have distinct functional roles in cochlear and vestibular hair cells.


Assuntos
Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Orelha Interna/citologia , Células Ciliadas Auditivas/citologia , Animais , Orelha Interna/metabolismo , Imunofluorescência , Células Ciliadas Auditivas/classificação , Células Ciliadas Auditivas/metabolismo , Humanos , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Vestíbulo do Labirinto/citologia , Vestíbulo do Labirinto/metabolismo
17.
Mol Cell Neurosci ; 38(2): 153-69, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18420419

RESUMO

Nothing is known about the regulation of nicotinic acetylcholine receptors (nAChRs) in hair cells of the inner ear. MuSK, rapsyn and RIC-3 are accessory molecules associated with muscle and brain nAChR function. We demonstrate that these accessory molecules are expressed in the inner ear raising the possibility of a muscle-like mechanism for clustering and assembly of nAChRs in hair cells. We focused our investigations on rapsyn and RIC-3. Rapsyn interacts with the cytoplasmic loop of nAChR alpha9 subunits but not nAChR alpha10 subunits. Although rapsyn and RIC-3 increase nAChR alpha9 expression, rapsyn plays a greater role in receptor clustering while RIC-3 is important for acetylcholine-induced calcium responses. Our data suggest that RIC-3 facilitates receptor function, while rapsyn enhances receptor clustering at the cell surface.


Assuntos
Células Ciliadas Auditivas Internas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Nicotínicos/metabolismo , Animais , Bungarotoxinas/farmacologia , Cálcio/metabolismo , Feminino , Células Ciliadas Auditivas Internas/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/citologia , Células LLC-PK1 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Receptores Nicotínicos/genética , Suínos , Sinapses/metabolismo , Transfecção
18.
Hear Res ; 226(1-2): 79-91, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17107766

RESUMO

The protective benefits of hypoxic preconditioning (HPC) against permanent noise-induced hearing loss (NIHL) were investigated in mice. Hypoxia induced by exposure to 8% O2 for 4 h conferred significant protection against damaging broadband noise delivered 24-48 h later in male and female CBA/J (CBA) and CBA/CaJ mice. No protection was found in C57BL/6 (B6) mice, their B6.CAST-Cdh23(CAST) (B6.CAST) congenics, or in CBAxB6 F1 hybrid mice over the same interval, suggesting that the potential for HPC depends on one or a few autosomal recessive alleles carried by CBA-related strains, and is not influenced by the Cdh23 locus. Protection against NIHL in CBA mice was associated with significant up-regulation of hypoxia-inducible factor-1alpha (HIF-1alpha) within the organ of Corti, not found in B6.CAST. In both CBA and B6.CAST mice, some hypoxia-noise intervals shorter than 24 h were associated with exacerbation of NIHL. Cellular cascades underlying the early exacerbation of NIHL by hypoxia are therefore common to both strains, and not mechanistically linked to later protection. Elucidation of the events that underlie HPC, and how these are impacted by genetics, may lead to pharmacologic approaches to mimic HPC, and may help identify individuals with elevated risk of NIHL.


Assuntos
Perda Auditiva Provocada por Ruído/genética , Perda Auditiva Provocada por Ruído/prevenção & controle , Precondicionamento Isquêmico/métodos , Animais , Animais Congênicos , Caderinas/genética , Cóclea/patologia , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Órgão Espiral/irrigação sanguínea , Órgão Espiral/fisiopatologia , Especificidade da Espécie , Fatores de Tempo , Regulação para Cima
19.
J Assoc Res Otolaryngol ; 6(4): 401-15, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16228856

RESUMO

To gain further insights into the cholinergic differentiation of presynaptic efferent terminals in the inner ear, we investigated the expression of the high-affinity choline transporter (ChT1) in comparison to other presynaptic and cholinergic markers. In the adult mammalian cochlea, cholinergic axons from medial olivocochlear (OC) neurons form axosomatic synapses with outer hair cells (OHCs), whereas axons from lateral OC neurons form axodendritic synapses on afferent fibers below inner hair cells (IHCs). Mouse brain and cochlea homogenates reveal at least two ChT1 isoforms: a nonglycosylated approximately 73 kDa protein and a glycosylated approximately 45 kDa protein. In mouse brain, ChT1 is preferentially expressed by neurons in periolivary regions of the superior olive consistent with the location of medial OC neurons. In the adult mouse cochlea, ChT1-positive terminals are located almost exclusively below OHCs consistent with a medial OC innervation. Between postnatal day 2 (P2) and P4, ChT1-positive terminals are below IHCs and occur after the expression of growth-associated protein 43, synapsin, and the vesicular acetylcholine transporter. By P15, ChT1-positive terminals are mostly on OHCs. Accounting for differences in gestational age, the developmental expression of ChT1 in the rat cochlea is similar to the mouse. However, in older rats ChT1-positive terminals are below IHCs and OHCs. In both rat and mouse, our observations indicate that the onset of ChT1 expression occurs after efferent terminals are below IHCs and express other presynaptic and cholinergic markers. In the mouse, but not in the rat, ChT1 may preferentially identify medial OC neurons.


Assuntos
Diferenciação Celular , Cóclea/embriologia , Células Ciliadas Auditivas Internas/citologia , Sistema Nervoso Parassimpático/embriologia , Animais , Tronco Encefálico/química , Cóclea/química , Imuno-Histoquímica , Proteínas de Membrana Transportadoras/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
20.
Brain Res Dev Brain Res ; 139(1): 87-96, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12414097

RESUMO

A recently discovered alpha10 subunit of the nicotinic acetylcholine receptor (nAChR) family is believed to form a heteromeric receptor with the alpha9 nAChR subunit in auditory hair cells. In the present study, the alpha10 nAChR subunit expression in the developing and adult rat inner ear was analyzed by PCR and localized using isotopic in situ hybridization. Unlike the alpha9 subunit, the alpha10 subunit was not detected at embryonic day 18 (E18). From E21 through postnatal day 15 (P15), the alpha10 subunit was localized over both inner hair cell (IHC) and outer hair cell (OHC) regions, but in the mature cochlea detectable levels of alpha10 mRNA were found only over the OHC region. From E21 through adult ages, there was also a small but consistent basal to apical gradient of alpha10 expression; that is, higher levels in basal regions and lower levels in apical regions. Previously, we detected the alpha9 nAChR subunit over IHCs as early as E18 and throughout adult ages with a clear basal-apical gradient of expression. Our studies raise the question of whether the alpha9 and alpha10 subunits are differentially regulated during embryonic and postnatal development.


Assuntos
Cóclea/metabolismo , RNA Mensageiro/biossíntese , Receptores Nicotínicos/biossíntese , Envelhecimento/metabolismo , Animais , Cóclea/embriologia , Cóclea/crescimento & desenvolvimento , Feminino , Células Ciliadas Auditivas Externas/embriologia , Células Ciliadas Auditivas Externas/crescimento & desenvolvimento , Células Ciliadas Auditivas Externas/metabolismo , Hibridização In Situ , Gravidez , Subunidades Proteicas , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...